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CALCULATIONS FOR ZPR-VII FLUX-TRAP REACTORS
WITH HEAVY WATER-MODERATED CORES

by

E. M. Pennington

ABSTRACT

Calculations have been made relating to flux-trap re-
actors constructed in the ZPR-VII critical assembly having
heavy water-moderated cores of THUD or Babcock and Wilcox
fuel. The flux-trap regions consisted of heavy water, except for
a few light water flux traps with THUD-fueled cores. Various
flux ratios and quantities, such as ratios of maximum thermal
flux to maximum power density or total core power, are com-
pared for THUD-fueled lattices. In connection with the B-and-
W-fueled lattices, which have thin cores with high resonance
absorption, a study is made of reactors havingcores with k,, < 1.
It is shown that it is possible for a reflected reactor having a
core with ks < 1 tobecritical if koo/p > 1,where p isthereso-
nance escape probability, and if the dimensions and material
constants involved are of suitable magnitudes.

I. INTRODUCTION

A flux-trap reactor consists of a core having a moderator-filled
region at the center (inner reflector) and perhaps also an outer reflector.
The thermal flux is highly peaked in the inner reflector, and so it is pos-
sible to have higher ratios of maximum thermal flux to maximum power
density or total power than is the case for reactors without flux traps.
Experimental flux-trap lattices have been constructed in the ZPR-VII
critical assembly(l) having heavy water-moderated cores of THUD or
Babcock and Wilcox (B and W) fuel.

The THUD fuel consists of pellets of thorium oxide and highly en-
riched uranium oxide with an atom ratio of thorium to U?**® of 25:1. The
radius of the pellets is 0.2972 cm, and they are clad in thin-walled alumi-
num tubes, roughly 5 ft long. For the B and W fuel, which also consists of
pellets of thorium oxide and enriched uranium oxide, the atom ratio of
thorium to U?3® is 15:1, the radius is 0.3302 cm, and the cladding is also
an aluminum tube about 5 ft long. In Reference 2 the properties of both the
THUD and B and W fuel pellets and claddings will be described in detail.



Flux-trap reactors containing THUD fuel were constructed with
cores having uniform triangular pitches of 2ay or bay, where ag is 0.9525cm
(% in.) and is equal to the spacing of the perforations in the grid plates
which are used to space the fuel rods. For the 2a, spacing, the cores had
various inner radii, outer radii, and heights, as well as an outer reflector
consisting mainly of D,0. The inner reflectors consisted of heavy water
or light water with a thin, aluminum cylindrical shell separating H,O from
D;O in the light water cases. In the case of the 6a, lattices, the cores had
various inner radii and heights, but essentially no outer reflector, as the
fuel almost reached the wall of the ZPR-VII tank. All 6a, lattices had flux
traps consisting of heavy water. Experimental work with the THUD-fueled
lattices with heavy water flux traps has been reported briefly in Reference 3.
The B-and-W-fueled flux trap reactors had inner and outer reflectors of
heavy water, various heights, and cores of la, spacing, which were very
thin, in some cases being less than 3 cm thick. All lattices had a bottom
reflector consisting of an inhomogeneous mixture of D,O and aluminum
structural materials, and no top reflector (except for the forest of fuel rods
above the level of the D,0).

The experimental work on all of the flux-trap lattices will be reported
in detail in Reference 4. In the following sections, calculations relating to
the lattices with THUD fuel and 2a, spacing, THUD fuel and 6a, spacing, and
B and W fuel will be described.

II. CALCULATIONS FOR THUD FUEL WITH 2a, SPACING

A. Heavy Water Flux Traps

Calculations were made for the 2a, lattices with THUD fuel and
D,0O flux traps, by means of two-group, one-dimensional diffusion theory
with the RE-6 code(?) on UNIVAC. For each set of radial dimensions used,
the calculations were repeated with two values of axial buckling corres-
ponding to values of H differing by 15 cm, where H is the critical height.
The reactivities were then found from 1 - (I/F), where F is given in the
output as the number by which k,must be divided to make the reactor crit-
ical. Then the calculations were done a third time with axial bucklings
interpolated from the first two on the assumption that the reactivity varia-
tion with height is proportional to l/Hs‘ In all cases, the third calculation
yielded a value of F differing from unity by less than 0.001.

Table I lists the constants which were used in the UNIVAC calcula-
tions. The inner reflector was assumed to consist of 98% D,O and 2% H,O,
whereas the outer reflector was takentobe 97% D,0O, 2% H,0, and 1% Al to
allow roughly for the Al control rod guides. A value of 105 cm was used
for the outer radius of the reactor. Note that the two-group age in both
reflectors was assumed to be 200 cm?2.(6,7)



Table I

MATERIAL CONSTANTS USED IN THE THUD
2ag CALCULATIONS

Core Inner Reflector Outer Reflector

T (cm?) 158.4 200 200
L%(cm?) 17.688 1856 1445
D, (cm) 1853115 1.251 1.260
D,(cm) 0.8340 0.7774 0.7830
P 0.8577 1 1
e, 1.3653 0 0
B%(cm~2) 2001021052

In Table II are listed the inner core radii R,, outer core radii R;,
criticality constants F, and heights H for the problems run with UNIVAC.
Problem 0 refers to the bare core with dimensions such that the ratio of
center flux to total power is maximized. The outer radii of 31.1 and
44.5 cm correspond to values used in the experiments.

Table II

CRITICALITY DATA FOR THUD 2a, CALCULATIONS
WITH D,O0 FLUX TRAPS

Problem
No. R, (cm) R, (cm) F H(cm)
0 0 65.69 1 121.4
1 0 Skl 1.000333 128.0
2 4.5 31.1 0.999521 12
3 9.0 31.1 0.999637 129.4
4 12.0 311 0.999699 132.6
5 150 31.1 1.000138 139.0
6 18.0 Sl L 0.999958 1581
7i 18.0 44.5 1.000637 104.0
8 24.0 44.5 1.000220 1125
9 30.0 44.5 0.999035 129.2

Figure 1l is a sketch of the shapes of the fast and thermal fluxes
for a typical case. In Table III are given the values of the fluxes, which
are denoted by the letters A through H on Figure 1. The fluxes G and H
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able III

FLUXES FOR THUD 2a, LATTICES WITH D,0 FLUX TRAPS

Fast Fluxes

Thermal Fluxes

Problem A B (] D E F G H
1 137.000 71259 20.028 SIS 18.571 47.676
2 127.489 131131 77.615 30.892 255838 31.362 18.736 47.923
3 111,621 124.500 79.604 49.639 32.000 32.360 19.590 49.435
4 100.049 121.088 82.337 63.699 35.514 32.653 20.894 51.561
) 89.254 119.120 86.423 78.615 39.103 35.944 23.233 55.118
6 78.726 117.408 91:925 93.599 42.899 39.404 27.309 60.341
il 87.960 135.354 86.829 892958 45.740 33.241 20.964 49.852
8 66.787 1352025 98.008 124.744 50.520 38.309 24.430 58.184
9 52.369 142.022 115.203 152782 58.026 47.168 32.414 72.295
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We turn now to considerations of the magnitudes of the central
thermal fluxes when the limitations are maximum power density or total
power. Since about 195 Mev of useful energy is produced per fission and
one megawatt-sec equals 6.242 x 10'® Mev, the power density is given by

1952¢ @ Mw 2f® Mw

6.242 x 10" cm?® 3.2 x 106 cm3

where 3¢ is the macroscopic fission cross section and @ is the thermal
flux. Thus for a bare reactor, the ratio of the central flux to maximum
power density is given by (3.2 x 1016)/Zf, whereas for a flux-trap reactor

; : sk e WA
this ratio is = ) 3 2(0) > , where @,(0) is the thermal flux at the
Zf 2CM

center of the reactor and @, is the maximum thermal flux in the core.
The ratio of central flux to total power for a bare cylindrical reactor is

. 2igo 1018 j
given by (3_2x—) <&> ( ! > , where R is the radius of the

Zf 431(jor) ) \ TR*H
reactor and H its height. For a flux-trap reactor the corresponding ratio
o s MR e =
is (ix_) (—ZQJ> % , where CDZC is the average thermal
=g 6ZC m(R; - R})H

flux in the core. Note that for a bare reactor the ratio of central flux to
total power is proportional to 1/(RZH). Thus R and H can be chosen to
maximize this ratio under the restriction that

:2
B2 = lz Jo
EICINR 2
This gives

B 7 v/ in

16 3 16
(3.2 x 10 ) ( B ) = (3'2 =30 ) (0.024533B3)
Z¢ 6 /3 TionJ1(ior) 2f

as the maximum value of the ratio of central flux to total power.

In Table IV are given flux ratios and power-limited fluxes for the
2a, lattices. In this table, I is the integral of the thermal flux over the
core volume, R is the value of CDZ(O)/IZC divided by the corresponding value
for a bare reactor of optimum dimensions, and other symbols have been
defined previously. Thecentral flux is given for a maximum power density



of 100 watts and for a total power of 100 Mw. These values have no great
significance and are merely used to yield definite numbers for the central
fluxes rather than numbers involving power as a factor. They were also
used by Ergen(s) in his study of spherical flux-trap reactors with very thin
cores.

Table IV shows that the flux-trap reactors with small flux-trap
radius have a smaller central flux than a bare reactor if maximum power
density is the limitation considered. This is due to the fact that little
peaking takes place in a flux trap of small radius. For this reason the
peaking in the core near the boundary between the core and the outer re-
flector becomes more significant. However, the ratio CI>Z(O)/<I>ZCM
increased steadily with flux-trap radius over the range of radiiconsidered
and reached a value of 2.633 for an internal radius of 30 cm.

Table IV

FLUX RATIOS AND POWER-LIMITED FLUXES FOR 2a, LATTICES
WITH D,0 FLUX TRAPS

%,(0)

Prob- 22000 _%:(0) fac ©(0)* &,(0)*x

lem P2cM 2C (em=3x10-%) R [n/(cm?)(sec) x 10]  [n/(cm?)(sec)x 10]
0 1 3.6381 2 2L 1 1053 2.528
il 0.6433 1.503 3.864 1.748 0.6774 4.069
2 0.9850 2.2 5.979 2.704 1.037 6.296
3 1.534 3.415 9.479 4.287 1.615 9.981
4 1.794 4.070 17187 5.368 1.889 122250
5 2.010 452 1SS O 6.318 2,117 14.71
6 2.182 4.672 15.40 6:965 2.298 16.22
7 2.185 6. 271 1) (Sl 2,301 12.20
8 2.469 6.638 118 317 6.047 2.600 14.08
) 2.633 6.262 14.28 6.458 2.713 15.04

*maximum power density = 100 watts/cm3

**total power = 100 Mw

The ratio of the central flux for the flux-trap reactor to the central
flux for a bare reactor of optimum dimensions in the total power-limited
case is 1.748 for the reactor with external reflector only and core radius
31.1 cm, and increases rapidly as the flux-trap radius is increased. Of
course, both inner and outer reflectors contribute to this increase, whereas
the outer reflector can be a hindrance in the power-density-limited case.

Table V gives the neutron inventory for a typical 2a, lattice, namely,
that of Problem 7.



Table V

NEUTRON INVENTORY FOR A TYPICAL 2a, LATTICE
WITH D,0 FLUX TRAP

Fast Neutrons

Radial Leakage

Total Total Axial Inner Outer
Region Source Removals Leakage Leakage Radius Radius
1 0 0.07222 -0.07222 0.01318 0 -0.08540
2 1 0.55901 0.44099 0.08080 0.08540 0.27479
3 0 0.22615 -0.22615 0.04127 -0.27479 0.00737
Total il 0.85738 0.14262 0.13525 0.00737
Thermal Neutrons
Radial Leakage
Absorp- Total Axial Inner OQuter
Region Source tions Leakage Leakage Radius Radius
1 0.07222 0.00324 0.06898 0.00549 0 0.06349
2 0.47946 0.62862 -0.14916 0.01015 -0.06349 -0.09582
B 0.22615 0.03857 0.18758 0.05086 0.09582 0.04090
Total OB 0.67043 0.10740 0.06650 0.04090

The critical dimensions calculated for the 2a, lattices are in reason-
able agreement with the experimental ones which will be reported in Ref-
erence 4. Of course, the value of H in the UNIVAC problems is to be
compared with the experimental core height plus the axial reflector savings.
The calculated thermal fluxes differ somewhat from the ones obtained by
foil activation in that there is a tendency for the theoretical thermal fluxes
to be higher than the experimental in the outer reflector and lower than the
experimental at the flux-trap center. It is possible that the use of different
reflector constants could improve this situation. Perhaps the value of
200 cm? used for the age in both reflectors is too high, and also the values
used for L2 in the reflectors may not be very accurate. The values of i
depend strongly on light water impurity and, in the case of the outer re-
flector, on the inhomogeneity due to the presence of Al control rod guides.
However, because of limitations on machine time, no calculations were
done with different reflector parameters.

B. Light Water Flux Traps

For the 2a, lattices with H,O flux trap, calculations were performed
using the RE-122 code on the IBM-704 computer. This code is essentially
the RE-6 UNIVAC code rewritten for the 704. In rewriting the code, pro-
vision was made for iteration on axial buckling to make the reactor critical.



Thus it was necessary to do only one problem for a given set of radial
dimensions. The convergence criterion used was such that F should
differ from unity by less than 0.0005.

The core and outer reflector constants used in the RE-122 prob-
lems were those given in Table I. For the inner H,O reflector the values
T =33 cm?, 1?2 = 8.025 cm?, D; = 1.19 cm, and D, = 0.1581 cm were
used. Experimental inner core radii calculated by assigning the area of
a unit cell to each fuel rod are a little larger than the inner radius of the
Al thimble. In general, the core was considered to extend right up to the
inner Al thimble radius in the RE-122 calculations, although in problem6
below, a thin D,O region having the constants of the inner reflector in
Table I was inserted between the flux trap andcore. Otherwise problem 6
is the same as problem 5. Table VI lists the inner and outer flux trap
radii R, and R, of the RE-122 problems along with the converged values
of F and corresponding heights H. The two values of R, in problem 6
refer to the inner and outer radii of the above-mentioned thin D,0O region.

Table VI

CRITICALITY DATA FOR THUD 2a, CALCULATIONS
WITH H,O0 FLUX TRAPS

Problem

No. R, (cm) R, (cm) F H (cm)
1 0 27.61 1.000457 148.2
2 2.54 27.61 (0f (ofekee i) 145.5
8 5.08 30.50 1.000432 140.1
4 5.08 29.04 1.000061 149.8
B 3.175 27.61 15000217 147.0
6 3r175 8436 27.61 1000082 148.6

Table VII for the H,O flux traps is analogous to Table III for the
D,0 flux traps, and also the notation of Figure 1 is used in specifying the
fluxes. The two values of B and E for problem 6 correspond to the inner
and outer radii of the thin D,0O region.

Table VIII gives the same quantities for H,O flux traps as are given
in Table IV for D,O flux traps. The notation in the two tables is identical.

The maximum value of ®,(0)/®2cM in Table VIII is 2.753 for prob-
lem 3, which is a little higher than the highest value, 2.633, for the D,O
flux traps of Table IV. Also, the ratio of central flux for the flux-trap
reactor to central flux for a bare reactor of optimum dimensions in the
total power limited case attains a value of 8.371 in problem 4, which is
higher than the highest value obtained for the D,O flux traps studied,
namely, 6.965.



Table VII

FLUXES FOR THUD 2a, LATTICES WITH
H,0 FLUX TRAPS

Fast Fluxes Thermal Fluxes
Prob-
lem A B C D E F G H
Il 128.95 75:815 18.923 31.683 18.212 48.794
2 618355 1694.5 107ie5 883.16 440.59 449.00 262.25 689.66
5 1030.5 1245.6 897.39 1190.7 432.54 370.00 216.59 570.80
4 1Lfarpist IS STeT 980.24 12797 465.30 409.42 238.07 634.02
5) 1151253 1631.8 1072.9 1062.8 470.04 447.78 261.89 688.63
6 1449.2 1563.6 1080.6 1081.6 535103 451.83 264.59 695.63
1639.8 448.26
Table VIII
FLUX RATIOS AND POWER-LIMITED FLUXES FOR 2a, LATTICES
WITH H,0 FLUX TRAPS
2,(0)
Prob- &(0) CD_"‘(O) T2c ©,(0)* D,(0)**
lem P2cM P2¢c (em=3x10-%) R [n/(cmz)(sec)xlo“] [n/(cmz)(sec)xlom]
1 0.5973 1.420 4.000 1.809 0.6290 4.212
2 1.967 4.545 13015 5.948 20T 13585
3 2:153 Tl B 18.42 8.328 2.899 19.39
4 2150 20! 1851 8.371 2.896 19.49
5 2.261 5.441 15.66 7.083 2381 16.49
6 2.394 5.472 15.78 7.135 R2ELZ 16.61
*Maximum power density = 100 Watts/cm3

**Total power = 100 Mw

The neutron inventory for problem 3 is given in Table IX.

Critical heights calculated for the 2a, lattices with light water flux
traps are not in very good agreement with the experimental values.(9,4)
The calculations predict much lower critical heights relative to the re-
actor with no flux trap (problem 1) than are found experimentally. Per-
haps some of the difficulty is due to the use of diffusion theory, which
might be expected to be poor near the interface between core and flux
trap, at which the reactor composition changes so drastically, as does the
slope of the thermal flux.

11
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Table IX

NEUTRON INVENTORY FOR A TYPICAL 2a, LATTICE

WITH H,O FLUX TRAP

Fast Neutrons

Radial Leakage

Total Total Axial Inner Outer
Region  Source Removals Leakage Leakage Radius Radius
1 0 0.06112 -0.06112 0.00101 0 -0.06213
2 1 0.53843 0.46157 0.04292 0.06213 0.35652
3 0 0.31968 -0.31968 0.03217 -0.35652 0.00467
Total 1 0.91923 0.08077 0.07610 0.00467

Thermal Neutrons

Region  Source

Absorp- Total Axial
tions Leakage Leakage

Radial Leakage

Inner Outer
Radius Radius

1 0.06112
0.46181
%) 0.31968

0.02475 0.03637 0.00010
0.62849 -0.16668 0.00559
0.07576 0.24392 0.05509

0 0.03627
-0.03627 -0.13600
0.13600 0.05283

Total 0.84261

0.72900 ONISI6H 0.06078

0.05283



III. CALCULATIONS FOR THUD FUEL WITH 6a, SPACING

For the 6a, lattices, calculations were done analytically using a
Fortran program, RE 240, * for the IBM-704. This program uses two-
group diffusion theory for an annular core with an inner reflector but no
outer reflector. The equations which were used in writing the program
along with a description of the input and output are given in the Appendix.

Material constants used in the RE-240 calculations are listed in
Table X. Note that the calculations were done for an inner reflector with
either 2% H,O impurity or pure D,O, and also with a reflector age of
200 cm? or a calculated value.

Table X
MATERIAL CONSTANTS USED IN THE THUD 6a, CALCULATIONS

Inner Reflector

2% H,0 Pure D,0

Core Case I Case II Case III Case IV
7(cm?) 150.7 200 122 200 127
L? (cm?) 7z 1856 1856 3x10* 3x10*
D, (cm) 1.266 12501 13251 1.251 1.251
D, (cm) 0.794 0.7774 0.7774 0.8418 0.8418
p 0.9852 1 1 1 1
k 1.4130 0 0 0 0

©

B2 (cm™?) 1.1660x 1073

Table XI contains the critical dimensions for the problems run for
all four cases of inner reflector constants given in Table X. In Table XI,
R, and R, are the inner and outer core radii, respectively, and H is the
height. Problem 00 refers to the bare reactor with critical dimensions
which yields the maximum ratio of central flux to total power.

Table XI

CRITICAL DIMENSIONS FOR THUD 6a, CALCULATIONS

R, (Cm)
Problem R, (cm) H (cm) Case I Case IT Case III Case IV
00 86.25 159.36 0 0 0 0
0 105 124.04 0 0 0 0
1 105 126.89 9.15 9.82 10.41 10555
2 105 132.25 15.21 15.81 1727 18.15
3 105 141.42 21.45 21.93 24.32 25.11
4 105 160.11 28.94 29.31 32.80 33.50
5 105 196.73 36.30 36.59 41.17 41.81

*Written by J. Rathbun, student aide in Reactor Engineering Division
during summer of 1960.

13



In Table XII the values of fluxes from the RE-240 output for all
four sets of reflector constants are given. The notation A, B, D, E for the
fluxes is the same as used in Figure I and Table III. For Problem 00 andO,
A =B =368.37and D = E = 553.03.

Table XII

FLUXES FOR THUD 6a, LATTICES

Case I Case I
Problem A B ] E A B ) E
1 271.00 303.79 598.70 565.94 228.82 280.09 656.37 597.45
2 195.41 263.55 612.39 552.06 146.49 238.35 678.26 585.29
3 134.85 234.51 606.88 531.12 89.640 210.85 665.46 561.68
4 85.251 212.16 587.42 509.01 48.980 190.48 630.53 535.88
5 54.599 198.74 569.06 495.33 27.084 178.24 597.02 519.33
Case IIT Case IV
Problem A B D E A B D E
1 256.85 297.42 621.10 578.09 21139 273.04 681.58 610.37
2 176.30 2571.40 650.05 569.90 121.73 233.13 71431 602.09
3 115.39 230.02 659.65 554.30 73.660 207.97 713.86 583.26
4 68.362 209.52 661.56 538.76 37.463 189.53 699.75 564.11
5 40.829 196.82 672.61 531.67 19.182 177.87 696.67 554.15

Table XIII gives the same quantities relating to power considerations
for the 6a, lattices as were given in Table IV for the 2a, lattices.

Table XTI

FLUX RATIOS AND POWER-LIMITED FLUXES FOR 6a, LATTICES

@0 @0 3,(0) D0 (00
2 I pdaoh et vsoM] Bt
Problem ®acm &2 Ipc R nllem®)(sec)x 10° nl(cm®)(sec) x 10°
00 1 3.638 0.9768 il 12.02 11.74
0 1 3.638 0.8468 0.8669 12.02 10.17
Case T
1 1.058 3.9%9 0.9031 0.9245 12n 10.85
2 1109 4.029 0.8984 0.9197 13.32 10.79
3 1143 3.992 0.8505 0.8707 13.73 10.22
4 1154 3.864 0.7541 0.7720 13.87 9.061
5 1149 3774 0.6240 0.6388 13.81 7.497
Case I
1 1.09 4318 0.9911 1015 13.20 1191
2 1159 4.462 0.9967 1.020 13.93 11.98
B 1185 4378 0.9346 0.9568 14.24 11.23
) L177 4.148 0.8112 0.8305 14.14 9.747
5 1150 3.928 0.6561 0.6717 13.82 7.883
Case IIT
1 1.074 4.086 0.9389 0.9612 12.90 11.28
2 1141 4.276 0.9594 0.9822 13.71 11.53
3 1.190 4.340 0.9362 0.9584 14.30 11.25
4 1228 4.352 0.8696 0.8903 14.75 10.45
5 1.265 4.425 0.7674 0.7856 15.20 9.220
Case IV
1 L117 4.484 1.032 1.057 13.42 12.40
2 1.186 4.699 1.057 1.082 14.25 12.70
3 1.224 4.696 1017 1.041 14.71 12.22
4 1.240 4.603 09241 0.9460 14.90 11.10
5 1257 4.583 0.7993 0.8183 15.10 9.604

*Maximum power density = 100 wa\ts/u:m3

** Total power = 100 Mw.



For the 6a, flux-trap reactors, the peaking in the flux trap was
not very great, and the largest value of @,(0)/®,cM for any of the cases
studied was 1.265. However, for the power-density-limited case,
larger values of central flux are possible than for the 2a, lattices.
This is because the maximum flux is inversely proportional to the
macroscopic fission cross section, which is over ten times as large
for the 2ay core as for the 6ag core. Thus the much better peaking
in the 2a, case does not cancel the effect of the smaller fission cross
section of the 6a, core when power density is the limiting consideration.

For the total-power-limited case, the central flux was less
than that for the bare reactor of optimum dimensions in most of the
6ba, problems studied. In the case of the 2a, lattices, the improve-
ment over the optimum bare lattice was almost by a factor of
seven in one problem. However, this comparison is not entirely
fair to the 6ag lattices. The lattices studied in the 6a, case had
cores which were somewhat "shorter and fatter" than the optimum
dimensions, as can be seen by comparing values of R, and H for
problems 00 and 0 in Table XI. Also,*the 2a, lattices had outer
reflectors, which help to increase the central flux in the total-
power-limited case, whereas the bag lattices were externally bare.
Nevertheless, the much more highly absorbing 2a, core produces
much larger flux gradients at the core boundaries than the 6ag
core. The best 2a, lattices studied here have a higher central flux
in the total-power-limited case than the best 6a, lattices in spite
of the fact that the b6ao lattices are favored by a factor larger than
ten in the fission cross sections.

The neutron inventory for Problem 3 of the 6a, lattices is
given in Table XIV.

Table XIV

NEUTRON INVENTORY FOR A TYPICAL 6a, LATTICE

Case T
Fast Neutrons

Radial Leakage

Total Total Axial Inner Outer
Region Source Removals Leakage Leakage Radius Radius

1 0 0.03159 -0.03159 0.00312 0 -0.03471
2 1 0.82475 0.17525 0.06134 0.03471 0.07920
Total 1 0.85634 0.14366 0.06446 0.07920

Thermal Neutrons

Radial Leakage

Absorp- Total Axial Inner Outer
Region Source tions Leakage Leakage Radius Radius

1 0.03159 0.00665 0.02494 0.00610 0 0.01884
2 0.81254 0.69726 0.11528 0.05956 -0.01884 0.07456
Total 0.84413 0.70391 0.14022 0.06566 0.07456
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Table XTIV (Cont'd.)

Case I

Fast Neutrons

Radial Leakage
Total Total Axial Inner Outer
Region Source Removals Leakage Leakage Radius Radius
1 0 0.04329 -0.0439 0.00261 0 -0.04590
2 1 0.81447 0.18553 0.06057 0.04590 0.07906
Total 1 0.85776 0.14224 0.06318 0.07906
Thermal Neutrons
Radial Leakage
Absorp- Total Axial Inner Outer
Region Source tions Leakage Leakage Radius Radius
1 0.04329 0.00756 0.03573 0.00692 0 0.02881
2 0.80242 0.69726 0.10516 0.05956 -0.02881 0.07441
Total 0.84571 0.70482 0.14089 0.06648 0.07441
Case I
Fast Neutrons
Radial Leakage
Total Total Axial Inner Outer
Region Source Removals Leakage Leakage Radius Radius
1 0 0.03816 -0.03816 0.00377 0 -0.04193
e 1 0.81657 0.18343 0.06073 0.04193 0.08077
Total 1 0.85473 0.14527 0.06450 0.08077
Thermal Neutrons
Radial Leakage
Absorp- Total Axial Inner Outer
Region Source tions Leakage Leakage Radius Radius
1 0.03816 0.00062 0.03754 0.00918 0 0.02836
2 0.80448 0.69726 0.10722 0.05956 -0.02836 0.07602
Total 0.84264 0.69788 0.14476 0.06874 0.07602
Case IV
Fast Neutrons
Radial Leakage
Total Total Axial Inner Outer
Region Source Removals Leakage Leakage Radius Radius
1 0 0.05104 -0.05104 0.00320 0 -0.05424
2 1 0.80507 0.19493 0.05987 0.05424 0.08082
Total 1 085611 0.14389 0.06307 T ooz
Thermal Neutrons
Radial Leakage
Absorp- Total Axial Inner Outer
Region Source tions Leakage Leakage Radius Radius
1 0.05104 0.00071 0.05033 0.01056 0 0.03977
2 0.79315 0.69726 0.09589 0.05956. -0.03977 0.07610
Total 0.84419 0.69797 0.14622 0.07012 0.07610

Critical dimensions calculated for the 6a, lattices with L%= 1856 cm?
in the reflector are in fair agreement with experimental values, although
the maximum flux-trap radius studied experimentally was less than the
radii of Problems 4 and 5. Since the thermal flux in the flux trap is peaked
only a little over the J, shape of a bare reactor, the flux shapes do not
provide much opportunity to compare theory and experiment.
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IV. TWO-GROUP TREATMENT OF A CRITICAL SLAB
REACTOR STRESSING THE CASE FOR WHICH k <1

An interesting feature of the la, lattices with B and W fuel is the
fact that, because of very high resonance absorption, the value of k , is
less than unity. It is commonly believed that it is not possible to build a
critical reactor having a core with k <1. However, this statement is true
only for a bare reactor. If a reflected reactor has a core with kg <1, but
koo/p>l, it may be possible for it to be critical. Using two-group theory
for a slab reactor with an infinitely thick reflector on both sides of the
core, a study has been made of the variation of the resonance escape
probability p with core half-thickness H necessary to make the reactor
critical. Illustrative numerical calculations have been performed for the
caseinwhichthe perpendicular bucklingis zero. For the case in which k<1,
the value of p increases rapidly from zero as H increases, reaches a
maximum, and slowly decreases to an asymptotic value as H-=%. Thus for
a certain range of p values, there are two critical values of H. This be-
havior can be explained physically as follows. For very thin cores, p is
small and km/p is large, since a large percentage of neutrons produced
are absorbed in the reflector. As the core becomes thicker, this effect
becomes less important and so p increases. Of the neutrons thermalized
in the core, only kw(<1) are thermalized for each thermal neutron absorbed
in the core. Thus a considerable fraction of the fast neutrons produced in
the core must be thermalized in the reflector and leak back to the core to
maintain criticality. As the core gets thicker, a smaller fraction of neu-
trons are thermalized in the reflector, and so p decreases and kw/p in-
creases to sustain criticality. At first it might be thought that p would
decrease to zero again for very large H, since only a small part of the core
is near the reflector. However, the thermal flux increases exponentially
from the center of the core, and so a reasonable number of neutrons are
produced near enough to the core boundary to slow down in the reflector
even for very large H. Thus, if H is large, p approaches a finite asymp-
totic value rather than zero. The theory used for these considerations is
given in the following paragraphs.

We start with the usual two-group diffusion equation for core and
reflector, namely,

da? d1c Dic D
k o 2c
Dic = (1 + 7eB}) ¢p1c +— —5 ¢oc = 0 (1)
dx? Tf P - Lé
d?¢ac Dac PDic
= 1 +12 B +——1c = 0 (2)
Dazc P Lz ( ¢ Bi) ¢zc 7 Pl
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dz(blr Dir 5
1r = = o (1 +7.Bf)¢r = 0 (3)
d*¢or D,y Dir
D = 1 + L2 B})por +— -0 4
By TyTE L ( r Bi)®2r = brr (4)

where the notation is standard. The solutions of these equations, which

have zero slope at the middle of the core (x = 0) and vanish for x—=o,
are:

$1c = AX + CY

b2c = S;AX +5S,CY

b1y = FZ,

Pr = SsFZ, + GZ,

where

X = cos Ix s

Y = cosh mx b
Z, = e P¥ ‘
Z, = e "P2X
2 g2 2
I = u® - By )
m? =y 4B}
2
P = I/Tr +Bj‘_ s
2 2
Pzi= 1/Lr +Bj -
PDic
S, = T/ 5 I 4
2
TCDZC<—Z i /~i>
L¢
pPDic
S, = 1 H
T .4 = =
e 2C
(Li )
Dir

- R o e
Ty Doy Pt b
Lr Tr

and ‘u,z and 1% are defined in the appendix.
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The critical determinant is found from the usual conditions that

(blC = (blr
(ch = ¢or
d ¢1c doir
Pre g T DT
and
deac d ¢or
Dzc T = Doy e

with all functions being evaluated at x = H. In order to simplify the
formulae, we take

Dic = Dir

Dzc = Dar
and

(i T

Then the critical determinant may be evaluated and written as follows:

1
Tp1(p1 + p2)

(m tanh mH + £tan £H)

12 1 W2 +r+ 22t 247+ 2Alep2
Mol ol Mok i S ot

p-
2
(S LU o SIS B2\ L =l R
[m tanh mH<1 'T#z + ST Lgp.zh o £tan £H W + 220 + 1 *7#2 P - (m tanh mH)(£tan£H) [T} Kot P2 (5)

The above equation was used in numerical calculations for Bie=—0)
For BJZ_ = 0 and k<1, 4 tan £ H becomes -q tanh oH with £ = pz = g

where a? is positive. Also, X becomes cosh ax. The behavior of p as a
function of H for k<1 has been described above. For Bf = 0 and ke, = 1,

it = 0 and p is given by

Ly
(it pEl)|| =——r—e
% Ly + ~T
p(B] = 0, ke = 1) = :
Lec LZ +7
(v tanh pH) (1 + E
L. vT TL,
Thus, for k,, = 1, p increases from zero with increasing H and soon

attains an asymptotic value. This is not surprising since an average of
one thermal neutron is thermalized for each thermal neutron absorbed in
the core whether the thermalization takes place in the core or in the



reflector. For kw>1, which is the case usually considered, y>0 and p in-
creases from zero with increasing H and attains a value of unity for a value
of H less than (ﬂ/Zp). In this case, there are other intervals of H where
H>(7T/Z @) which yield a value of p between 0 and 1, but these values do not
have physical significance because they yield fluxes which are not always
positive. For the case ko<1, a sufficient condition for the fluxes to be
positive is $;>0 and S,< 0, which is true for most sets of reasonable values
of the constants involved.

The following sets of constants were used to calculate p as a function
SEn = = 0 LR = N e & P ety L = e e = 0065, L, cidl
1.10. Table XV gives the results.
Table XV

p AS A FUNCTION OF H FOR THREE VALUES OF ko

H ke = 0.95 ke = 1 Ko = ienl
(cm) P K o/p P keo/p P Koo/p
0 0 ) 0 o 0 o
0.1 0.30813 3.0831 0.32445 3.0821 0.35701 3.0811
052 0.42617 2.2292 0.44889 2.2277 0.49431 2.2253
0}.5) 0855 1 78N 2T 7N 0R58 1 9 ORI 7R 15 B 006 < 2 310 BT 8 i 75 o
1 0.60860 1.5610 0.64328 1.5545 0.71336 1.5420
2 0.63541 1.4951 0.67474 1.4821 0.75555 1.4559
) 0.63989 1.4846 0.68286 1.4644 0.77242 1.4241
4 0.63917 1.4863 0.68549 1.4588 0.78368 1.4036
6 0.63395 1.4985 0.68673 1.4562 0.80244 1.3708
8 0.62783 1.5131 0.68689 1.4558 0.82119 1.3395
10 0.62176 1.5279 0.68691 1.4558 0.84103 1.3079
1145) 0.60737 1.5641 0.68692 1.4558 0.89803 1.2249
20 0.59428 1.5986 (Ol 7Ab 25 I 52
30 0.57211 1.6605 supercritical

40 0.55512 ' 1.7113
50 0.54252 1.7511
60 0.53347 1.7808
80 0:52264" N1.8177
100 0.5 L 749 NN E8358
© 0:51307-"1.8516




V. EXTRAPOLATION DISTANCE METHOD FOR A SLAB REACTOR

The slab reactor for the case of a thin core may also be treated by
the extrapolation distance method in which the core is considered to be of
zero thickness and the ratio of thermal flux to its derivative at the core-
reflector interface is given by an extrapolation distance d. This method
has been used by Ergen 8) for a spherical flux-trap reactor with slowing
down by Fermi age theory and a thermally black core (d = 0). Here we
correlate the extrapolation distance treatment for a slab core with the
two-region treatment given in the previous section in order to find values
for danda constantdenoted by pess, which will be defined below in connec-
tion with the criticality equation.

The diffusion equations in the reflector for the extrapolation dis-
tance treatment (E) are the same as for the method of Section IV in which
the finite thickness of the core is treated explicitly (F). Thus the arbitrary
constants in the solutions can be chosen so that the fluxes in the two
methods are equal at the corresponding points in the reflector. This im-
plies that the thermal extrapolation distance d for E must be the same
as the ratio of thermal flux to its derivative at the core boundary for F.
Therefore,

S)A cosh BH + S;C cosh mH
o S,Ap sinh BH + S,C m sinh mH

SZ(Btanh BH + p; )
~ S, \m tanh mH + p,

S, i Btanh fH + p,; ’
B tanh BH - S_1 m tanh mH m

where we have taken the case with k<1 and written |£| = B. If the core
has high thermal absorption, the value of d is given very roughly by

coth mH
m

d =

In order to define pgff, we integrate equations (1) to (4) over their
regions of validity and write the criticality equation as given by (10) below.
This gives

Dl koo DZ
s = (14 TB2 ) e +—=—=I,c=0 (6)
Jy = ( TJ._) 1G b ch Fel
D S D
TRt I 2B ) e +p—Ijc = O (7)
1L T

D
-Jl-?l(l+TBf)Ilr:O (8)
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D D
Ty -2 (14 L2B} ) Lrt =L =0 (9)
L T
D D,
(nfpetf - 1)J2-L—§(1+ L3B}) Ly - = 7Bi Lir = 0 (10)
&
where
F E
doir déir
Lt e = Be e ’
H 0
i E
- déor e dgar
ds 50 dx H e 0 :
H g
Iic =f ¢ dx )
0
H
F
IZC = ¢ZC dx N
0
n 00 [o4]
Ui = ¢y dx =f $1r dx ’
H 0

0 o
i E
Lr =f Poid = f $or dx
H 0

The criticality equation (10) may be written more explicitly as

nfpeff
ESm (11)
Tpi(p1 + P2)(1 + dpy)

On combining equations (6), (7), (8), (9), and (10), we get

D) L I
1= Jeh e Sl (1 + ’TBJZ_) e
= koo DZ T IZC (12)
Peff = e D caT
1+ LCB_L -p =— — —

D, 7 Ipc

In equation (12), the terms involving B_ZL allow for leakage from the
outside of a core finite in the directions perpendicular to the x-axis. The
other terms represent the fact that not all neutrons slow down in the



reflector and that there is a difference in the average number of neutrons
thermalized per neutron slowing down in the core or in the reflector. For
Bi = 0 and H very small, the value of p ¢f approaches one as expected.

VI. APPLICATION OF EXTRAPOLATION DISTANCE METHOD IN
CYLINDRICAL GEOMETRY TO la, CORES

The theoretical treatment of the la,-spaced lattices with B and W
fuel is more difficult than that of the other lattices. Because of the close
spacing of the fuel rods, it is difficult to calculate the core constants
accurately. The epithermal absorption is so high that it may not even be
reasonable to consider the low-energy flux as a Maxwellian plus a 1/E
tail in determining cross sections. Also, because of the high resonance
and epithermal absorption, the usual formulae for resonance or epithermal
escape probabilities may be poor, as they are based on weak absorption.
Because of these difficulties, complete calculations were not carried out
for the la, lattices. However, the extrapolation distance model in cylindri-
cal geometry was used to study important features of these lattices.

We consider a cylindrical reactor of finite height with a thin core
at r = R and an infinite radial reflector. The radial diffusion equations
in cylindrical coordinates are

G 1 d D, 2 S
T [y s -— (1+7TB%)¢; +——= 6(r-R)=0 (15
1<drZ i dr) < qF ( =) 2mR

d< 1 d D, 2= D,

ity = — — = (1 . 14
D, <drz i dr>(Z>2 I_,i e T & S

If we assume the extrapolation distance to have the same magnitude on
both sides of the core, the solutions are

#(x) = 75 KalmaR)L(mr) o T<R (15)
#(e) = o5 LERKp) . TR (16)

S Ko(p1R) (Io(PlR) + dp;I;(p1R)
%alx) = o0 D, 7(p-p2) |\ Lo(PzR) + dp2Li(PzR)

>10(P21‘) = ol e 5 ()

S Io(p1R) (Ko(PlR) + dp; Ki(piR)
dalr) = 27 D,7 (p2-p2) |\ Ko(P2R) + dp Ki(pzR)

) Ko(p2r) - Ko(pir)| » >R : (18)
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The criticality equation is found from the relation

d¢,

do, do, ot d¢,
T dr
R+ R

PesfNDz | 52 gy O g | ar

to be

Peif " (Io(le' + dp1l1(p1R’> (Ko(mR) + dPlKl(DlR’)> (20)
—ef 1) - paR (Kolp1 R (p2RI| o ) + TglpyRIK pR) x (e e ) <1
-3 PR \KolP1RMLP2RI\ 7o Ry dpyTy(ppR ) ¥ "0PLI 12T X\ KoipoR) + dppKy (PR

L

It may be seen on using the asymptotic forms of the Bessel functions(10)

that, for very large R, the criticality equation is the same as for the slab
reactor as it must be.

On the assumption that peff = 1, the total power is given by
Power = ———— —— (Thermal Absorption in Core)

1 k., 2s 28
3.2x 10" vp B,(k_/p) 3.2x10%uB,

Mw

Thus the central flux for a total power of 100 Mw is

$2(0)

B 5k (B 52 WO)) Ii(piR) + dpy 11 (piR) 5
; m Solpud) <10(p2R) e szll(PzR) - l> n/(Cm >(se(cz)l)'

We now use the above formulae to make some rough calculations
for la, lattices with B and W fuel. Table XVI gives the results. The
values of BZZ and R are experimental values(9) with R being the inner
radius of cores which were less than 3 cm thick. In making the calcula-
tions, the numbers T = 125 cm?, L% = 1000 cm?, D, = 0.75 cm, and v = 2.47
were used.

Table XVI

CALCULATIONS FOR B AND W la, LATTICES

R =16.43 cm R = 26.22 cm
B} = 0.00038 cm™? B} = 0.000535 cm™?
d ;20 $2(0)* . $2(0) $2(0)*
(cm) P GRD)  [n/(cm?(sec) x 10™] P G,R]) [n/(cm?)(sec)x 10']
0 1.507 o 20.1 1.479 @ 21.5
2 1.623  4.497 25.3 1.587 5.339 25.2
4 1873382 747 30.2 1.692 3.138 28.6
6 T R 34.9 1.793  2.404 31.9

*Total power = 100 Mw
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One would expect values of pesf and d to be about the same for
annular cores as for slab cores of the same thickness. This suggests that
d should be about 4 cm for the cores of Table XVI, although this value is
quite sensitive to Lé. As mentioned previously, it is difficult to calculate
accurate constants for the la; core, so the value suggested for d may not
be very good. The slab calculations indicate a value for pg¢s of about
0.96 or 0.97. Combined with the values of pg¢fnf in Table XVI for d = 4,
this gives values for 7nf of the order of 1.75 or a little larger. The value
of 1.75 is reasonable for thermal absorption alone, although epithermal
absorption would tend to reduce it somewhat. However, a little smaller
value of Lf:, and consequently of d, would reduce the values of pgsfnf in
Table XVI. Also, the values of pesfnf are quite sensitive to 7 and L%,
with an increase in T or a decrease in L7 increasing pgemf. In view of
the sensitivity of equation (20) to the various constants involved and the
uncertainty in these constants, about all that can be said is that the
values of pg¢enf in Table XVI are not inconsistent with experiment.

Table XVI shows that the flux peaking in the flux trap of laj lat-
tices is very good, as would be expected because of the highly absorbing
core. The central flux for a total power of 100 Mw is higher than that
obtained with any of the 2a, or 6a, lattices.






APPENDIX

Equations Used in Fortran Program RE-240

The two-group radial diffusion equations in cylindrical coordinates

are
@ i gl 1 keo Dy
Dic (?'*;a) ¢1c‘D1c(7+BZz) ¢lc+?L_é $oc = 0 )
=il @ 1 Dic
Dac (_rz+_r 3) ®2c - Dac (L—é+BZZ) ¢zc+P?¢1c =0
in the core, and
2 | 1
D;r B o s D (Ess e BESlE s S D) ;
dr ridz Tr

Dar (di:z +‘i§> $2r - Dor (LLi s B;) bar +D_T1r£ oo =10
in the central reflector, with all notation used being standard.
For the flux-trap region, the solutions of the diffusion equations are
by = AZ, :
br = SpAZ, + BZ, 5
where
Z, = Ip(pirr)
Z, = L(parr)

1

2 2
= — 4 B
Pir T z

1
Pir = 7z + B

Dir
1 1 :
TrDar (]jzr‘ g

and A and B are to be determined by boundary conditions.

Soz

2
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The solutions of the diffusion equations in the core are
$1c = CX + EY

¢2c = S,CX + S;EY 5

where
ai Jo(£R,)
X = Io(lr) - $RY Yelbr)
Io(mRz)
Y = Ij(mr) - Ko (iR ) Ko(mr)
12 = ’uz _ Bzz )

z )

2
1 1 1 1 4(ke - 1)

2 sl el S 140 B el e
ut=1/2 - <TC+L3> +%C+Lé) T NeEmn :
2oz (24 - R e

o Lé T LR Teily .

<
[}
5L

pDic
Sl = 1 3 )
TcDac (z tH )
pDic
S, = 1

R, is the outer radius of the core, and C and E are found from the boundary
conditions.

At the core-reflector interface, the continuities of fast and thermal

fluxes and of currents yield the critical determinant A and the constants A,
B, €, and E. The critical determinant is given by

= X' Dir 24 Y' Dir Z; € X' Dar Z, y' Dir Z;
doRtel e "B 7, Y "D Za) UL E ) R
= DZr X! Y! Zi Z,'Z i
T ZhN T B

where ' signifies d/dr and all functions are evaluated at the interface,
r = R. Also,




B

A‘ XI Yl .
@ [ Sl il

N e e T SR XV

E é X Dy Zi X! !

e\ S e o ST

The average fluxes are

= 4A Li(pirR)

ir i phE ;
= 4A Soli(p1rR) B I;(p2rR)
<3 7 PirR A parR ’

= RS S VO (O e o L ey v IS
P1c 'w(Ri-RZ)[A 72 (RX ! TrYo(,ZRZ)) TR R (RY ¥ Ko(mRz)):I ’

_ o TR 2 S:E 1 1y
e l:—A— VE (RX g ﬂYo(£R2)> YA e ( R R :

where X' and Y' are evaluated at r = R. In order to assign a value to the
constant A, the normalization condition

was used.

Input for the RE-240 program consists of the core and reflector
material constants, axial buckling, core outer radius, and two guesses for
the inner radius R of the core. The critical determinant is evaluated for
these two values of R and (N - 2) other values found by interpolation where
2 =N =9 and N is an input number. The output consists of the N values of
R and A, the average fast and thermal fluxes in core and reflector, the
values of the fluxes on the reactor axis and at the core-reflector interface,
and miscellaneous other data concerning the fluxes.
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